Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurodegener Dis ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38555638

RESUMO

BACKGROUND: Alzheimer's disease (AD) is emerging as a significant public health challenge in Africa, with predictions indicating a tripling in incidence by 2050. The diagnosis of AD on the African continent is notably difficult, leading to late detection that severely limits treatment options and significantly impacts the quality of life for patients and their families. SUMMARY: This review focuses on the potential of high-sensitivity specific blood biomarkers as promising tools for improving AD diagnosis and management globally, particularly in Africa. These advances are particularly pertinent in the continent, where access to medical and technical resources is often limited. KEY MESSAGES: Identifying precise, sensitive, and specific blood biomarkers could contribute to the biological characterization and management of Alzheimer's disease in Africa. Such advances promise to improve patient care and pave the way for new regional opportunities in pharmaceutical research and drug trials on the continent for Alzheimer's disease.

2.
Microbiol Spectr ; 11(6): e0275123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37815349

RESUMO

IMPORTANCE: Progressive multifocal leukoencephalopathy is a crimpling demyelinating disease of the central nervous system caused by JC polyomavirus (JCPyV). Much about JCPyV propagation in the brain remains obscure because of a lack of proper animal models to study the virus in the context of the disease, thus hampering efforts toward the development of new antiviral strategies. Here, having established a robust and representative model of JCPyV infection in human-induced pluripotent stem cell-derived astrocytes, we are able to fully characterize the effect of JCPyV on the biology of the cells and show that the proteomic signature observed for JCPyV-infected astrocytes is extended to extracellular vesicles (EVs). These data suggest that astrocyte-derived EVs found in body fluids might serve as a rich source of information relevant to JCPyV infection in the brain, opening avenues toward better understanding the pathogenesis of the virus and, ultimately, the identification of new antiviral targets.


Assuntos
Vesículas Extracelulares , Vírus JC , Infecções por Polyomavirus , Animais , Humanos , Vírus JC/fisiologia , Astrócitos , Proteômica , Antivirais
3.
Cells ; 12(7)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048058

RESUMO

Tauopathies are neurodegenerative disorders involving the accumulation of tau isoforms in cell subpopulations such as astrocytes. The origins of the 3R and 4R isoforms of tau that accumulate in astrocytes remain unclear. Extracellular vesicles (EVs) were isolated from primary neurons overexpressing 1N3R or 1N4R tau or from human brain extracts (progressive supranuclear palsy or Pick disease patients or controls) and characterized (electron microscopy, nanoparticle tracking analysis (NTA), proteomics). After the isolated EVs were added to primary astrocytes or human iPSC-derived astrocytes, tau transfer and mitochondrial system function were evaluated (ELISA, immunofluorescence, MitoTracker staining). We demonstrated that neurons in which 3R or 4R tau accumulated had the capacity to transfer tau to astrocytes and that EVs were essential for the propagation of both isoforms of tau. Treatment with tau-containing EVs disrupted the astrocytic mitochondrial system, altering mitochondrial morphology, dynamics, and redox state. Although similar levels of 3R and 4R tau were transferred, 3R tau-containing EVs were significantly more damaging to astrocytes than 4R tau-containing EVs. Moreover, EVs isolated from the brain fluid of patients with different tauopathies affected mitochondrial function in astrocytes derived from human iPSCs. Our data indicate that tau pathology spreads to surrounding astrocytes via EVs-mediated transfer and modifies their function.


Assuntos
Tauopatias , Proteínas tau , Humanos , Proteínas tau/metabolismo , Astrócitos/metabolismo , Tauopatias/patologia , Encéfalo/metabolismo , Isoformas de Proteínas/metabolismo
4.
PLoS One ; 17(7): e0270981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802727

RESUMO

GABAergic interneurons tend to diversify into similar classes across telencephalic regions. However, it remains unclear whether the electrophysiological and molecular properties commonly used to define these classes are discriminant in the hilus of the dentate gyrus. Here, using patch-clamp combined with single cell RT-PCR, we compare the relevance of commonly used electrophysiological and molecular features for the clustering of GABAergic interneurons sampled from the mouse hilus and primary sensory cortex. While unsupervised clustering groups cortical interneurons into well-established classes, it fails to provide a convincing partition of hilar interneurons. Statistical analysis based on resampling indicates that hilar and cortical GABAergic interneurons share limited homology. While our results do not invalidate the use of classical molecular marker in the hilus, they indicate that classes of hilar interneurons defined by the expression of molecular markers do not exhibit strongly discriminating electrophysiological properties.


Assuntos
Giro Denteado , Neurônios GABAérgicos , Animais , Interneurônios/metabolismo , Camundongos
5.
Mol Ther ; 30(2): 782-797, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34563677

RESUMO

Tauopathies are neurodegenerative diseases characterized by tau inclusions in brain cells. Seed-competent tau species have been suggested to spread from cell to cell in a stereotypical manner, indicating that this may involve a prion-like mechanism. Although the intercellular mechanisms of transfer are unclear, extracellular vesicles (EVs) could be potential shuttles. We assessed this in humans by preparing vesicles from fluids (brain-derived enriched EVs [BD-EVs]). These latter were isolated from different brain regions in various tauopathies, and their seeding potential was assessed in vitro and in vivo. We observed considerable heterogeneity among tauopathies and brain regions. The most striking evidence was coming mainly from Alzheimer's disease where the BD-EVs clearly contain pathological species that can induce tau lesions in vivo. The results support the hypothesis that BD-EVs participate in the prion-like propagation of tau pathology among tauopathies, and there may be implications for diagnostic and therapeutic strategies.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Tauopatias , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética , Proteínas tau/metabolismo
6.
J Vis Exp ; (177)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34866623

RESUMO

While much attention has been given to mitochondrial alterations at the neuronal level, recent evidence demonstrates that mitochondrial dynamics and function in astrocytes are implicated in cognition. This article describes the method for time-lapse imaging of astrocyte cultures equipped with a mitochondrial biosensor: MitoTimer. MitoTimer is a powerful and unique tool to assess mitochondrial dynamics, mobility, morphology, biogenesis, and redox state. Here, the different procedures for culture, image acquisitions, and subsequent mitochondrial analysis are presented.


Assuntos
Astrócitos , Mitocôndrias , Astrócitos/metabolismo , Células Cultivadas , Diagnóstico por Imagem , Dinâmica Mitocondrial , Neurônios/fisiologia
7.
Nat Neurosci ; 23(12): 1567-1579, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33169029

RESUMO

Alzheimer's disease (AD) is characterized by the accumulation of the tau protein in neurons, neurodegeneration and memory loss. However, the role of non-neuronal cells in this chain of events remains unclear. In the present study, we found accumulation of tau in hilar astrocytes of the dentate gyrus of individuals with AD. In mice, the overexpression of 3R tau specifically in hilar astrocytes of the dentate gyrus altered mitochondrial dynamics and function. In turn, these changes led to a reduction of adult neurogenesis, parvalbumin-expressing neurons, inhibitory synapses and hilar gamma oscillations, which were accompanied by impaired spatial memory performances. Together, these results indicate that the loss of tau homeostasis in hilar astrocytes of the dentate gyrus is sufficient to induce AD-like symptoms, through the impairment of the neuronal network. These results are important for our understanding of disease mechanisms and underline the crucial role of astrocytes in hippocampal function.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Astrócitos/metabolismo , Giro Denteado/metabolismo , Transtornos da Memória/metabolismo , Transtornos da Memória/psicologia , Proteínas tau/metabolismo , Doença de Alzheimer/complicações , Animais , Animais Geneticamente Modificados , Feminino , Humanos , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/metabolismo , Neurogênese , Parvalbuminas/metabolismo , Gravidez , Desempenho Psicomotor , Ratos , Memória Espacial , Sinapses/fisiologia
8.
Cells ; 8(6)2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242668

RESUMO

Mitochondria-associated ER membranes (MAMs) are crucial for lipid transport and synthesis, calcium exchange, and mitochondrial functions, and they also act as signaling platforms. These contact sites also play a critical role in the decision between autophagy and apoptosis with far reaching implications for cell fate. Vascular smooth muscle cell (VSMC) apoptosis accelerates atherogenesis and the progression of advanced lesions, leading to atherosclerotic plaque vulnerability and medial degeneration. Though the successful autophagy of damaged mitochondria promotes VSMC survival against pro-apoptotic atherogenic stressors, it is unknown whether MAMs are involved in VSMC mitophagy processes. Here, we investigated the role of the multifunctional MAM protein phosphofurin acidic cluster sorting protein 2 (PACS-2) in regulating VSMC survival following a challenge by atherogenic lipids. Using high-resolution confocal microscopy and proximity ligation assays, we found an increase in MAM contacts as in PACS-2-associated MAMs upon stimulation with atherogenic lipids. Correspondingly, the disruption of MAM contacts by PACS-2 knockdown impaired mitophagosome formation and mitophagy, thus potentiating VSMC apoptosis. In conclusion, our data shed new light on the significance of the MAM modulatory protein PACS-2 in vascular cell physiopathology and suggest MAMs may be a new target to modulate VSMC fate and favor atherosclerotic plaque stability.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Fagossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Morte Celular , Humanos , Lipoproteínas LDL , Camundongos , Modelos Biológicos
9.
Front Cell Neurosci ; 12: 432, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538622

RESUMO

Adult neurogenesis is one of the most drastic forms of brain plasticity in adulthood and there is a growing body of evidence showing that, in the hippocampus, this process contributes to mechanisms of memory as well as depression. Interestingly, adult neurogenesis is tightly regulated by the neurogenic niche, which provides a structural and molecular scaffold for stem cell proliferation and the differentiation and functional integration of new neurons. In this review, we highlight the role of astrocytes in the regulation of adult neurogenesis in the context of cognitive function. We also discuss how the changes in astrocytes function may dysregulate adult neurogenesis and contribute to cognitive impairment in the context of Alzheimer's disease.

10.
Neurobiol Aging ; 57: 220-231, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28666707

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory loss and impaired cognitive functions. The higher incidence of AD among women indicates that sex is one of the main risk factor for developing the disease. Using the transgenic amyloid precursor protein × presenilin 1 (APPxPS1) mouse model of AD, we investigated sex inequality with regards to memory capacities and hippocampal plasticity. We report that spatial memory is strongly affected in APPxPS1 females while remarkably spared in males, at all ages tested. Given the contribution of adult neurogenesis to hippocampal-dependent memory processes, we examined whether impaired neurogenesis could account for age-related decline of memory functions in APPxPS1 mice. We show that not only limited numbers of new neurons are generated in these mice, but also, that new granule cells display reduced capacity for synaptic connectivity, a default that is exacerbated in females. Moreover, high densities of hypertrophic astrocytes are observed in the dentate gyrus of APPxPS1 females specifically. By revealing sex-dependent hippocampal alterations, our data may provide causal explanation to APPxPS1 females' memory deficits.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Doença de Alzheimer/fisiopatologia , Hipocampo/fisiopatologia , Plasticidade Neuronal/fisiologia , Caracteres Sexuais , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Animais , Astrócitos/patologia , Giro Denteado/citologia , Modelos Animais de Doenças , Feminino , Hipocampo/patologia , Humanos , Hipertrofia , Masculino , Memória/fisiologia , Camundongos Transgênicos , Neurogênese/fisiologia , Neurônios/fisiologia , Fatores de Risco , Transmissão Sináptica/fisiologia
11.
Neurobiol Dis ; 102: 113-124, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28286181

RESUMO

Adult hippocampal neurogenesis is strongly impaired in Alzheimer's disease (AD). In several mouse models of AD, it was shown that adult-born neurons exhibit reduced survival and altered synaptic integration due to a severe lack of dendritic spines. In the present work, using the APPxPS1 mouse model of AD, we reveal that this reduced number of spines is concomitant of a marked deficit in their neuronal mitochondrial content. Remarkably, we show that targeting the overexpression of the pro-neural transcription factor Neurod1 into APPxPS1 adult-born neurons restores not only their dendritic spine density, but also their mitochondrial content and the proportion of spines associated with mitochondria. Using primary neurons, a bona fide model of neuronal maturation, we identified that increases of mitochondrial respiration accompany the stimulating effect of Neurod1 overexpression on dendritic growth and spine formation. Reciprocally, pharmacologically impairing mitochondria prevented Neurod1-dependent trophic effects. Thus, since overexpression of Neurod1 into new neurons of APPxPS1 mice rescues spatial memory, our present data suggest that manipulating the mitochondrial system of adult-born hippocampal neurons provides neuronal plasticity to the AD brain. These findings open new avenues for far-reaching therapeutic implications towards neurodegenerative diseases associated with cognitive impairment.


Assuntos
Doença de Alzheimer/metabolismo , Espinhas Dendríticas/metabolismo , Mitocôndrias/metabolismo , Neurogênese/fisiologia , Doença de Alzheimer/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos Transgênicos , Mitocôndrias/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Biogênese de Organelas , Distribuição Aleatória , Ratos Wistar
12.
Brain Struct Funct ; 222(6): 2585-2601, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28062924

RESUMO

During memory formation, structural rearrangements of dendritic spines provide a mean to durably modulate synaptic connectivity within neuronal networks. New neurons generated throughout the adult life in the dentate gyrus of the hippocampus contribute to learning and memory. As these neurons become incorporated into the network, they generate huge numbers of new connections that modify hippocampal circuitry and functioning. However, it is yet unclear as to how the dynamic process of memory formation influences their synaptic integration into neuronal circuits. New memories are established according to a multistep process during which new information is first acquired and then consolidated to form a stable memory trace. Upon recall, memory is transiently destabilized and vulnerable to modification. Using contextual fear conditioning, we found that learning was associated with an acceleration of dendritic spines formation of adult-born neurons, and that spine connectivity becomes strengthened after memory consolidation. Moreover, we observed that afferent connectivity onto adult-born neurons is enhanced after memory retrieval, while extinction training induces a change of spine shapes. Together, these findings reveal that the neuronal activity supporting memory processes strongly influences the structural dendritic integration of adult-born neurons into pre-existing neuronal circuits. Such change of afferent connectivity is likely to impact the overall wiring of hippocampal network, and consequently, to regulate hippocampal function.


Assuntos
Comportamento Animal , Hipocampo/fisiologia , Memória , Neurogênese , Neurônios/fisiologia , Animais , Condicionamento Psicológico , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Estimulação Elétrica , Medo , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Hipocampo/metabolismo , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Neurônios/metabolismo , Fatores de Tempo , Proteína Vermelha Fluorescente
13.
Brain Struct Funct ; 221(3): 1591-605, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25596866

RESUMO

The neural cell adhesion molecule NCAM and its association with the polysialic acid (PSA) are believed to contribute to brain structural plasticity that underlies memory formation. Indeed, the attachment of long chains of PSA to the glycoprotein NCAM down-regulates its adhesive properties by altering cell-cell interactions. In the brain, the biosynthesis of PSA is catalyzed by two polysialyltransferases, which are differentially regulated during lifespan. One of them, ST8SiaIV (PST), is predominantly expressed during adulthood whereas the other one, ST8SiaII (STX), dominates during embryonic and post-natal development. To understand the role played by ST8SiaIV during learning and memory and its underlying hippocampal plasticity, we used knockout mice deleted for the enzyme ST8SiaIV (PST-ko mice). At adult age, PST-ko mice show a drastic reduction of PSA-NCAM expression in the hippocampus and intact hippocampal adult neurogenesis. We found that these mice display impaired long-term but not short-term memory in both, spatial and non-spatial behavioral tasks. Remarkably, memory deficits of PST-ko mice were abolished by exposure to environmental enrichment that was also associated with an increased number of PSA-NCAM expressing new neurons in the dentate gyrus of these mice. Whether the presence of a larger pool of immature, likely plastic, new neurons favored the rescue of long-term memory in PST-ko mice remains to be determined. Our findings add new evidence to the role played by PSA in memory consolidation. They also suggest that PSA synthesized by PST critically controls the tempo of new neurons maturation in the adult hippocampus.


Assuntos
Ambiente Controlado , Hipocampo/enzimologia , Memória/fisiologia , Moléculas de Adesão de Célula Nervosa/fisiologia , Sialiltransferases/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurogênese , Plasticidade Neuronal , Sialiltransferases/genética , Memória Espacial/fisiologia
14.
Brain ; 138(Pt 2): 440-55, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25518958

RESUMO

In adult mammals, neural progenitors located in the dentate gyrus retain their ability to generate neurons and glia throughout lifetime. In rodents, increased production of new granule neurons is associated with improved memory capacities, while decreased hippocampal neurogenesis results in impaired memory performance in several memory tasks. In mouse models of Alzheimer's disease, neurogenesis is impaired and the granule neurons that are generated fail to integrate existing networks. Thus, enhancing neurogenesis should improve functional plasticity in the hippocampus and restore cognitive deficits in these mice. Here, we performed a screen of transcription factors that could potentially enhance adult hippocampal neurogenesis. We identified Neurod1 as a robust neuronal determinant with the capability to direct hippocampal progenitors towards an exclusive granule neuron fate. Importantly, Neurod1 also accelerated neuronal maturation and functional integration of new neurons during the period of their maturation when they contribute to memory processes. When tested in an APPxPS1 mouse model of Alzheimer's disease, directed expression of Neurod1 in cycling hippocampal progenitors conspicuously reduced dendritic spine density deficits on new hippocampal neurons, to the same level as that observed in healthy age-matched control animals. Remarkably, this population of highly connected new neurons was sufficient to restore spatial memory in these diseased mice. Collectively our findings demonstrate that endogenous neural stem cells of the diseased brain can be manipulated to become new neurons that could allow cognitive improvement.


Assuntos
Doença de Alzheimer/terapia , Hipocampo/citologia , Transtornos da Memória/terapia , Células-Tronco Neurais/transplante , Neurônios/fisiologia , Doença de Alzheimer/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Transtornos Cognitivos/genética , Transtornos Cognitivos/psicologia , Giro Denteado/citologia , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Neurogênese , Neuropeptídeos/genética
15.
PLoS One ; 8(9): e76497, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086745

RESUMO

At advanced stages of Alzheimer's disease, cognitive dysfunction is accompanied by severe alterations of hippocampal circuits that may largely underlie memory impairments. However, it is likely that anatomical remodeling in the hippocampus may start long before any cognitive alteration is detected. Using the well-described Tg2576 mouse model of Alzheimer's disease that develops progressive age-dependent amyloidosis and cognitive deficits, we examined whether specific stages of the disease were associated with the expression of anatomical markers of hippocampal dysfunction. We found that these mice develop a complex pattern of changes in their dentate gyrus with aging. Those include aberrant expression of neuropeptide Y and reduced levels of calbindin, reflecting a profound remodeling of inhibitory and excitatory circuits in the dentate gyrus. Preceding these changes, we identified severe alterations of adult hippocampal neurogenesis in Tg2576 mice. We gathered converging data in Tg2576 mice at young age, indicating impaired maturation of new neurons that may compromise their functional integration into hippocampal circuits. Thus, disruption of adult hippocampal neurogenesis occurred before network remodeling in this mouse model and therefore may account as an early event in the etiology of Alzheimer's pathology. Ultimately, both events may constitute key components of hippocampal dysfunction and associated cognitive deficits occurring in Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Neurogênese , Envelhecimento , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Biomarcadores/metabolismo , Calbindina 1/metabolismo , Contagem de Células , Movimento Celular , Giro Denteado/metabolismo , Giro Denteado/patologia , Giro Denteado/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Neuropeptídeo Y/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA